sie 29 2021

fizjologia roślin 7


Komentarze: 0

 Rosliny CAM, kwasowy metabolizm roslin gruboszowatych Crassulaceae. Rośliny rosnące w warunkach pustynnych i półpustynnych należące do rodzin kaktusowatych Cactaceae, gruboszowatych Crassulaceae i bromeliowatych Bromeliaceae mają oszczędną gospodarkę wodnę, zapobiegającą utracie wody. Szparki otwierają się w nocy, gdy temperatura spada, nie przebiegają wtedy procesy fasy jasnej, częściowo są procesy fazy ciemnej. W cytozolu komórek tych roślin jest PEPC, nocą powst. szczawiooctan, dehydrogenaza z NAD+ jest kwas jabłkowy, gromadzi się w wakuoli, zakwasza ją. CAM nie mają zróżnicowania strukturalnego. W dzień szparki są zamknięte L-jabłczan opuszcza wakuolę, w cytozolu działa enzym jabłczanowy  (dekarboksylaza), utlenia jabłczan, powst. zred NADPH+, CO2 idzie do cyklu Calvina-Bensona, pirogronian idzie do obiegu, powst. fosfoenolopirogronian, wszystkie reakcje są w jednej komórce, faza ciemna ma rozdział czasowy. Mechanizm regulacji wiązania CO2 u CAM to regulacja aktywności PEPC i enzymu jabłczanowego, który katalizuje dekarboksylację. Ich stała aktywność dałaby jalowy cykl z natychmiastowym uwolnieniem zwiazków. Jest tu fosforylacja i defozforylacja odpowiedniej seryny bialka PEPC. Za dnia enzym jest nieufosforylowany, jego inhibitor to jabłczan, aktywność karboksylacyjną enzymu jest hamowana, nocą jest fosforylacja przez odpowiednią kinazę, ufosforylowana forma jest niewrażliwa na gromadzący się jabłczan. Fotooddychanie jest u części roslin, obok mitochondrialnego. Polega na stymulowanemu przez światło pobieranie O2 i wydzielaniu CO2, nie generuje ono energii, jest ona tracona, rubisco działa jak karboskylaza, wiąże CO2 do 1,5-disfosfororybulozy i jako oksygenaza rozbiera cząśteczki 1,5-disfosfororybulozy z udziałem O2. O2 i CO2 wiążą się do tego samego miejsca w centrum katalitycznym enzymu, od efektu ich współzawodnictwa zależy aktywność karboksylazowa lub oksygenazowa. CO2 i O2 wiążą się do tego samego miejsca aktywnego enzymu, różnią się one powinowactwem do niego. 0,035% CO2 i 21% O2. Karboksylacja przewyższa 2 - 3 razy utlenianie, gdy stężęnie obu gazów jest takie samo to karboksylacja jest o 80% szybsza. Wzrost O2 i temp. daje utlenianie 1,5-disfosforybulozy. Proces zachodzi w chloroplastach, mitochondriach i peroksysomach. Oksygenaza 1,5-disfosforybulozy odłącza O2, cząsteczka rozbija się na 2 cząsteczki kwasu fosfoglikolowego i 2 cząsteczki trójfosfoglicerynowego, który wchodzi do cyklu Calvina-Bensona. Kwas fosfoglikolowy odłącza fosfor, powst. glikolowy, który idzie do peroksysomu. Tam oksygenaza glikolanowa daje O2, odłącza H2O2, powst. glioksalowy. Katalaza rozbija H2O2 na H2O i O, aminotransferaza przenosi z glutaminianu NH2 na kwas glioksalowy, z glutaminianu powstaje glicyna, z kwasu 2-oksyglutaran. Glicyna idzie do mitochondrium, wzamian idzie seryna. W mitochondrium dekarboksylaza glicerynowa odłącza CO2, hydroksymetylotransferaza dołącza gr. HCO, powst. seryna, idzie do peroksysomu. Aminotransferaza odłącza gr. NH2. Powstają 2-oksyglutaran, glutaminian, hydroksypirogronian. Reduktaza NADPH daje pirogronian. /kwas glicerynowy iodzie do mitochondrium, kinaza glicerynowa daje kwas trójfosforoglicerynowy. Fotooddychanie uwalnia wcześniej związany CO2. Przynosi ono roślinie straty energii. Produktywność rosliny spada do 50%. Fotooddychające rośliny mają wysoki ptk. kompemsacji CO2. (30-60 mikromoli CO2xl-1). Foodddychanie chroni aparat fotosyntetyczny przed uszkodzeniem, gdy jest duże natężenie reakcji świetlnych (fazy jasnej) a szybkość reakcji ciemnych (fazy ciemnej) maleje z powodu spadku stężenia CO2. Wzrost temp. obniża rozpuszczalność CO2 w wodzie na korzyśc O2, jest ono u roślin C3, C4 mają je w małym stopniu, w komórkach pochwy okołowiązkowej jest wyższy stosunek CO2 do O2 niż w mezofilu. Jest wzrost aktywności karboksylazowej PEPC nie zależy od temp., gdyż PEPC ma tylko aktywność karboksylazową. CAM też mają niski stopień fotooddychania. Koszt asymilaci CO2  u C3 to 3 cząsteczki ATP, 2 NADPH, 500 cząsteczek wody utracone jest w wyniku transpiracji. C4 4-5 cząsteczek ATP, 2 NADPH, 2wody, CAM 5,5-6,5 ATP, 2 NADPH,50 H2O. Pierwszy namierzalny produkt asymilacji CO2 u roslin C4 to L-jabłczan, asparaginian, szczawiooctan, C3 3-fosfoglicerynian. Natężęnie fotosyntezy C3 jest niskie, C4 wysokie, światlne warunki u C3 nizkie, u C4 wysokie, ptk. kompensacji u C3 wysoki, zależny od temp., u C4 niski, niezależny od temp. Reakcje świetlne u bakterii, reakcje ciemne są wg. Calvina - ensona,  świetlne są zrónicowane pod względem budowy, wymagań troficznych i środowiskowych. Sinice mają oksygeniczny typ fotosyntezy, tu woda jest donorem e-. Bakterie beztlenowe też mają fotosyntezę. Donor e- to związki siarki lub proste związki organiczne. Sinice mają 2 fotosystemy, inne bakterie 1. Sinice mają fotosystemy podobne do tych w chloroplastach,ale brak u nich struktur granowych, mają układ anten fikobilinowych, fikobilisomy, mają fikocyjaninę. Bakterie fotosyntetyzujące to bakterie zielone (nitkowate), u których donorem e- są proste związki organiczne i siarkowe zielone, tu donor e- to H2S i Na2S2O3 (tiosiarczan sodu) lub słabe kwasy siarkowe. Bakterie fotosyntetyzujące nie mają chlorofilu, mają bakteriochlorofil, zamiast fitylu ma farmezyl. Bakteriochlorofil jest w centrum reakcji fotochemicznej i absorbuje dł. fali 800 nm. 2 gr, to bakterie siarkowe purpurowe, wykorzystują S i związki niesiarkowe, tu donor e- to proste związki organiczne. Struktury antenowe leżą w chromosomach. U bakterii fotosyntetyzujących ściana komórkowa, błona i białkowa płytka to to podstawowe elementy z bakteriochlorofilem i antenami. Transport e- podobny do PSI lub PSII. Chemosynteza, wiązanie CO2 jest w cyklu Calvina-Bensona, powstanie równoważnika redukcyjnego NADPH i ATP jest w (CO, CH4, aldechyd octowy CH3CHO, kwas mrówkowy HCOH i aldechyd mrówkowy HCOH), Jest substrat reakcji nieutlenowany + O2, jest sybstrat utlenowany i energa. Ok. 0,5% całożci związków organicznych jest wytarzane w chemosyntezie, tu gdzie nie ma tlenu - dno zbiorników wodnych, gleba. Bakterie nitryfikacyjne utleniają NH4, NH4+O2=2HNO2+H2O. Utlenianie ma 2 etapy. 1 NH4 utl. do NO2-+ E, to robią bakterie z gr. Nitrosomonas (formy coccus, spirae). 2 azotyny NO2- są utl. do azotanów NO3- przez bakterie Nitrobacter (formy coccus, spirae), są to autotrofy. Siarkowe utl. związki siarki (H2S, NaS2O3, SO2), do utl. siarki idzie O2 z azotanów, siarka jest utl. do kwasu siarkowego, N2 idzie do góry, te bakterie żyją w beztlenowym środowisku, do utl. związków siarki używają tlenu z azotanwó, jest proces denitryfikacji, uwolnienie N2, jest tu np. Tiobacillus denitrificans. Bakterie wodorowe, w czasie rozkładu materii org. uwalniają H2. Beztlenpowy rozkład martwej materii org. np w bagniskach daje uwolnienie H2, bakterie tej gr. utl. go do wody i uwalnia się energia, wykorzystywana jest do wiązania H2, O2 i CO2, mają wysoką energię aktywacj reakcji 680 st. C, obniżają ją enzymy denitryfikacyjne, wykorzystujące O2 z azotanów do utl. H2, jest to u np. Micrococcus denitrificans. 2HNO3+5H2=N2+6H2O. Bakterie żelazowe Fe2+=Fe3++E gromadzą Fe3+ w otaczających je pochewkach polisacharydowych, tworzą rudę darniową w strumykach. Stres radiacyjny, nadmiar PAR lub UV go dają, w silnym natężeniu PAR aparat fotosyntezy dostaje więcej energii fotochemicznej niż może spożytkować, daje to fotoinhibicję fotosyntezy, spada wydajność kwantowa fotosyntezy, w dalszym etapie jest fotodestrukcja barwników fotosyntezy, liście stają się białe i są zmiany strukturalne głównie w chloroplastach miękiszu palisadowego, gdzie są odbierane produkty fotosyntezy NADPH i ATP, e- nie może być transportowany, w PSI jest dużo energii, systemy uwalniania nie wystarczają, jest rozkład barwników i zmiany struktur chloroplastów. Są gatunki fotolabilne, uszkodzenia są po krótkim działaniu nadmiaru PAR, to glony, mszaki i rośliny dna lasu (robiące podszycie lasu) i podwodne. Fotostabilne żyją na otwartych przestrzeniach, są przytsosowane do działania wysokich natężeń światła. W czasie fotoinhibicji są utrudnienia na drodze fotosyntetycznego transportu e-, sprzyjają temu czenniki stresowe np. brak CO2 i H2O, zasolenie, wysoka temperatura. fotoinhibicja jest zawsze, dgy silnemu promieniowaniu towarzyszy ograniczenie szybkości reakcji, odpowiedzialnej za redukcje CO2 w fazie ciemnej. Rosliny doniczkowe zimujące w  domu stopniowo wynosimy na pole i przyzwyczajamy do słońca. Przyczyny uszkodzeń i mechanizmy obronne. Miejsce uszkodzeń to centrum reakcji PSII, gdzie białko D1 uczestniczy w przekazywaniu energii, daje to zaburzenia transportu e- i fotoinaktywację PSII, tu nadmiar energii jest usuwany na drodze fluorescencji i rozproszony jest jako ciepło, nagromadzenie H+ w pęcherzyku tylokaidu związane z wysyceniem pobierania H+ do redukcji NADP+ daje zakwaszenie błony tylokaidu i jest rozproszony w cyklu ksantofilowym. Cykl ten zachodzi w blonach tylokaidu, polega na odwracalnej przemianie wiolaksantyny przez enteroksantynę do zeaksantyny, rosliny w ciemności lub słabym świetle mają dużo wiolaksantyny, silne światło daje zakwaszenie wnętrza tylokaidu i przyłaczenie deoksydazy wiolaksantynowej do wewnętrznej pow. błony tylokaidu i daje początek przemianie wiolaksantyny w zeaksantynę. W ciemności jest odrwotna reakcja sterowana przez oksydazę zeaksantyny. wiolaksantyna ma przy pierścieniach jononowych po 1 wiązaniu epokdydowym, które pęka i przyłącza się H+, powstaje cząśteczka H2O, spada stężenie H+ w pęcherzyku. Inny proces redukujący nadmiar E to fotooddychanie. Sline promieniowanie pomimo tych dróg daje powstanie reaktywnych form tlenu, jest stres oksydacyjny, są tlen singletowy, rodnik ponadtlenkowy O2- i nadtlenek wodoru H2O2 i jon hydroksylowy, usuwanie tych form tlenu jest przez układy oksydoredukcyjne, sat u dysmutaza ponadtlenkowa, katalaza, tokoferole, glutation. Mechanizmy dostosowania to adaptacja do warunków silnego światła, polega na unikaniuszkodliwych natężeń światła przez zmanę kąta ustawienia blaszek liściowych (heliotropizm), zmianę położenia chloroplastó w komóce, związane jest to z ruchem cytoplazmy, wytworzenie różnych struktur na powierzchni organów fotosyntetyzujących np. włosków (do 40% absorbcji światła), pogrubionej kutikuli, syntezę i nagromadzenie antocyjanów gł. w epidermie, cio daje pochłonięcie znacznej ilości energii, zwiększenie ilości barwników ochronnych np. karotenoidów w chloroplastach. Promieniowanie ultrafioletowe dzielimy na UV próżniowe - dł. fali pon. 200 nm, UVC - 200 - 280 nm, UVB - 280 - 315 nm, UVA - 315 - 380 nm.

Do tej pory nie pojawił się jeszcze żaden komentarz. Ale Ty możesz to zmienić ;)

Dodaj komentarz