fizjologia roślin 9
Komentarze: 0
Inne czynniki to stopień uwodnienia, silne uwodnienie hamuje aktywnośc enzymów, w wysuszonach nasionach bzu Sambucus sp. wzrost wilgotności o 1% daje wzrost aktywności oddychania o 20%, zranienie i mechaniczne podrażnienie tkanek daje wzrost oddychania, co jest związane z polepszeniem wymiany gazowej. Dojrzewające owoce maja oddychanie klimakteryczne, związane z dekarboksylacją niektórych zwiazków np. pektynianów w ścianie komórkowej, to inny proces biochemiczny niż oddychanie s stricto. Rozkład tych związków podnozi wydzielanie CO2, owoce przechodzące klimakterium to jabłka owoce Malus sp. gruszki Prunus sp., pomidory Licopersicon esculentum, sliwki Prunus sp. Nieprzechodzące to winogrona Vitis vinifera, czereśnie Cerasus avium, cytryny Citrus limon, ogórki Cucumis sativus, ananasy Ananas comosus, poziomki Fragaria vesca. Materiały zapasowe to 3 gr. związków: 1. wielocukry, skrobia, glikogen, mają możliwośc szybkiej degradacji, skrobia wystepuje w postaci ziaren skrobiowych, glikogen to materiał zapasowy cheterotrofów. 2. hemicelulozy wchodzące skład ściany komórkowej np. w nasionach fasoli Phaseolus vulgaris, w czasie kiełkowania jest zanik grubości ściany (rozkład), 3. oligosacharydy, inulina, sacharozasą w soku komórkowym. 2 gr, to tłuszcze, zwykle są proste, chemicznie obojętne, hydrofobowe, są w skupieniach np. kropelkach w nasionach roslin oleistych, mak lekarski Papaver somniferum, rzepak Brassica napus, slonecznik zwyczajny Helianthus annuus. Tłuszcze żadko mogą być w formie stałej np. masło kakaowe, zwykle są w postaci ciekłej. 3. białkastanowią materiał budulcowy, żadko energetyczny. Białka zapasowe są najczęściej w małych wakuolach jako twory parakrystaliczne i skupienia nasion w formie estrów fosforanowych białek. włączenie substratów do oddychaniaskrobia może być wolno degradowana przez fosforylazę skrobiową lub szybko przez amylazę. Skrobia to nierozpuszczalny polisacharyd zbudowany z ok. 25% nierozgałęzionych łańcuchów amylozy, z wiązaniami α 1,4-glikozydowymi i z ok. 75% amylopektyny z rozgałęzioną strukturą. Ma dodatkowe wiązania α1,6-glikozydowe. Są 3 rodzaje amylaz α, β, γ. α i β rozkładają wiązania α1,4-glikozydowe, γ rozkładaja oba wiązania, ich działanie daje rozkład skrobii do dwucukru, maltozy i glukozy. Organoleptyny rozkładają się do dekstryn krańcowych mających wiązania α1,6-glikozydowe i do oligosacharydów, β amylazy rozkładają amylazę do maltozy. zaczynają jej rozkład od wolnego końca co 2 wiązania i amylopektyna rozkłada się na maltozę i dekstryny krańcowe z wiązaniami α1,6-glikozydowe. γ amylazy rozkładają je do glukozy. Białka zapasowe rozkładaja kwaśne peptydazy do aminokwasów, które po deaminacji mogą wchodzić do cyklu Krebsa. Tłuszcze pod wpływem lipaz rozkładają się na glicerol i kwasy tłuszczowe, glicerol fosforyluje ATP, powstaje glicerolofosforan, jest dehydrogenacja, powstaje NADH i fosfodihydroksyaceton, który idzie do glikolizy. Kwas tłuszczowy jest degradowany na drodze α lub β oksydacji, zalezy to od atomów węgla przy, których jest degradacja R-CH2-COOH, przy pierwszym jest α, przy 2 β oksydacja. Alfa oksydacja rozkłada kwasy tłuszczowe o 13 - 18 atomach węgla w cząsteczce, jest dekarpoksylacja i odwodorowanie. Tu powstaje 1 cząsteczka NADH, mały zysk energii. znaczenie ma beta oksydacja, jej wszystkie metabolity topochodne acetylokoenzymu A acetyloCoA. 1 etap to połaczenie kwasu tłuszczowego z CoA, tu potrzeba cząsteczki ATP, powst. acetyloCoA, dehydrogenaza odłącza H+, powstaje FADH, inna dehydrogenaza odłącza H+, powst. NADH, jest dołaczona nowa cząsteczka COA, odłącza się acytyloCoA krósza o 1 atom C i wchodzi do następnego cyklu. 1 obrót zużył 1 cząsteczkę ATP, powst. 1 cząsteczka FADH, 1 NADH i acetyloCoA (czynny octan), włącza się on do cyklu Krebsa. W cyklu powstają 3 cząsteczki NADH, 21 ATP i 1 FAD, duży zysk energii, maksymalnie 1,5 cząsteczek ATP. Iloraz oddechowy RQ=CO2mol/O2mol. RQ - stosunek ilości moli CO2wydzielonego przy oddychaniu do ilości moli pobranego O2, mówi na naturze substratu używanego w oddychani i o stopniu jego utlenienia. RQ może mieć 0,3 - 1,7. Dla cukrów=1, tu stopień C do O to 1/1. Kwasy organiczne (zwykle silnie utlenione) mają .1, utlenienie tłuszczy (słabo utlenionych) RQ,1. 0,3 jest w czasie syntezy cukrów, kiełkowania nasion roslin oleistych, w glikoneogenezie. 1,7 jest w czasie redukcji azotanów. Organizmy dzielimy na bezwzględne autotrofy, nie korzystają ze związków organicznych (są dla nich toksyuczne) to bakteria Nitrosomonas Lyngbya, sinica Oscillatoria. Autotrofy mogą włączać CO2 i związki organiczne to rośliny. Amfitrofy włączają na raz CO2 i związki organioczne to zielenica Chlorella scenedesmus. Miksotrofy, słaba fotosynteza pobierają związki organiczne od roślin to pasożyty roślinne np. tocja alpejska Tozzia alpina. Heterotrofy są tylko cudzożywne jedzą związki organiczne. Martwą materię jedzą saprofity, żywe istoty pasożyty. Gospodarka azotowa, związki azotowe budują aminokwasy i nukleotydy, które są cegiełkami budującymi kwasy nukleinowe i białka, dostępność azotu dla roslin uprawnych to czynnik warunkujący wydawanie plonów, tylko C, H i O są w większych ilościach od N w związkach organicznych. W przyrodzie są azot cząsteczkowy N2, azotany NO3-, azotyny NO2-, amoniak NH+ i związki organiczne azotu. Obieg azotu w przyrodzie, w glebie są korznie rosliny, którymi pobiera azot w dwóch formach NH3- i NH4+. NH4+ wchodzi do ketokwasów, powstają aminokwasy i białka roslinne. NO3- jest redukowany do NO2-, potem do NH4+, jest to redukcja azotanów. Powstają białka roślinne, jedzą je roślinożerne zwierzęta, je jedzą mięsożercy. Ich odchody zwierzą i ciała zwierząt i roślin idą do gleby, jest rozkład przez florę roztoczową do aminokwasów, potem do NH4+, jego pobieraja rosliny. Oszczędna gospodarka, rosliny nie rozrywają podwójnego wiązania między N w N cząsteczkowym. W azot glebę wzbogacaja wyładowania atmosferyczne, powstają w nich reaktywne formy tlenu, łączą się z N2, powstaje NO2, z deszczem opada od gleby. Działanie organizmów glebowych, bakterie, sinice wiążą N atmosferyczny. Przemysłowa działalność ludzi, produkcja nawozów sztucznych, 10% całej puli włączanego N pochodzi z działalności ludzi, 12% z wyładowań atmosferycznych, 78% przez działanie mikroflory glebowej. światowa produkcja nawozów ma rocznie 50 mln t czystego N. Procesy zubożające glebę, działanie bakteri denitryfikacyjnych, w wyniku chemosyntezy uwalniają N2, dzięki nim jest obieg materii w przyrodzie. Wielkie pożary w przyrodzie, unieruchomienie dużej puli materii org. w warunkach beztlenowych, zapobiegających jej rozkładowi. np. w bagnach, na dnie oceanów itd. Ciała i odchody organizmówidą do gleby jest rozkład, amonifikacja 2CH2NH2COOH+3O2+4CO2+2H2O+2NH3., jest duża E podwójnego wiązania w N2, rośliny opływają w azot, ale nie korzystają z niego. Biologiczne wiązanie azotu w warunkach technicznych, rozbicie N2 potrzebuje wysokiej temp. 500 st. C i ciśnienia ponad 3000 hPa. Przyłaczenie wodoru daje amoniak to reakcja Habera. Mikroorganizmy wiążą N2, dzięki enzymowi, nitrogenazie, która rozbija podwójne wiązanie w N2. Robią to niektóe gatunkim sinic i bakterii. Są organizmy symbiotyczne np. Rhizobium sp. (bakterie brodawkowe), współpracujące z motylkowymi Papilionaceae i z drzewem parasponia Parasponia sp. Są tu też rodzaj Frankia i promieniowce Actinomycetes i Anaboena z azollą Azolla sp., azolla żyje tam gdzie ryż Orysa sp., tam nie nawozi się pól, azolla wiąże 3 kg, N2 na ha, na dzień i ok. 1200 kg czystego N2 na rok, na ha. U nas mało się nawozi. Nostok Nostoc współpracuje z karczochem Cynara sp. Są też niesymbiotyczne sinice Anaboena, Calotrix i Nostoc. Bakterie tlenowe np. Azospirillum sp. i Azotobacter sp., fakultatywne Bacillus sp., niebieskie, beztlenowe, niefotosyntetyzujące Clostridium methanococcus, fotosyntetyzujące Chromatium sp. i Rhodospirillum sp. Bakterie wiążące azot są wolnożyjące lub symbiotyczne. Włączanie N2 we wiązanie N2 jest odwracalnie inaktywowane przez O2. Wiązanie N2 jest w warunkach beztlenowych. Organizmy żyjące w tlenowym środowisku tworzą warunki beztlenowe w swoim wnętrzu. Nitkowata sinica Nostoc ma cheterocysty, mają one grube ściany komórkowe i brak PSII, w nich jest wiązanie N2. Gatunki środowisk tlenowych np. Gloeothece sp. wiążą N2 w nocy, kiedy nie ma fotosyntezy, tlenowa bakteria Azotobacter utrzymuje warunki beztlenowe przez bardzo silne oddychanie. W brodawkach korzeniowych u motylkowych jest barwnik leghemoglobina, która ma bardzo wysokie powinowactwo do tlenu, wiąże się z nim i ułatwia jego usuwanie z pobliża miejsc wiązania N2. Stęż. leghemoglobiny to ok. 700 mikromoli w komórce, połowiczne wysycenie tlenem jest przy stęż. 10 - 20 moli, hemoglobina przy 126 nanomolach. Bialko globina syntetyzują komórki roślin żywicieli, a hem bakterie. Rhizobium żyje w glebie, korzenie roślin wydzielają chemoatraktanty, flawonoidy, bakterie zbliżają się do rejonu włośników, na pow. bakterii jest sluz złożony z polisacharydów, na pow. korzenijest białko lektyna, pomiędzy komórkami korzeni i bakteriami powst. wiązanie glikoproteinowe, pod wpływem Rhizobium rosnie synteza auksyn we włosikach, jest ich rozrost i zagięcie. Wzrost ściany komórkowej włośnika, która jest bardzo cienka i rozpuszczają ja wydzieliny bakterii, które tak wnikają do przestrzeni pomiędzy ścianą komórkową i plazmolema. Wykorzystując błony aparatu Golgiego rozrasta się zewnętrza część plazmolemy, gdzie sa bakteri tworzą one nić infekcyjną, która rozrasta się do inncyh komórek i do kory pierwotnej. komórki Rhizobium okupuja zewnętrzną część plazmolemy, nioe wnikają do cytoplazmy, po osiągnięciu odpowiednich rozmiarw nici infekcyjnych i liczby komórek jest endocytoza Rhizobium i otaczają sie one w cytoplazmie błonami, dzielą się i zmieniają się ich fizjologiczne właściwości, mają zdolność do wiązania N2, jest to bakteroid.Równocześnie z wniknięciem bakterii jest rozrost komórek kory pierwotnej. Tworzą one brodawkę, ma ona własny system transportowy, połączony z układem transportowym rośliny, ułatwia to transport zw. azotowych innych części rosliny. Rosliny nienależące do motylkowych też mogą mieć system wiązania N2 np. olsza Alnus sp. bakterie Actinomycetes np. Azospirillum przyczepia się w strefie elongacyjnej korzeni tropikalnych traw. Chemizm wiązania N2, redukcja do NH3. N2+6e-+6H+=2NH3, redukcja niedoskonała, trzeba e- z ferredoksyny, jest hydroliza ATP. Rozbicie N2 i powst. NO3 katalizuje kompleks enzymatyczny zwany nitrogenazą. Są tu 2 enzymy reduktaza dinitrogenzay (Fe-białko) i dinitrogenza (Fe-Mo-białko). Reduktaza dinitrogenazy ma 2 podjednostki białkowe i 2 atomy żelaza, jest bardzo wrważliwa na O2 i odwracalnie inaktywowana, jej czas półżycia to 30 - 45 s. Dinitrogenaza ma 4 jednostki białkowe, 2 gr. prostetyczne, każda ma Fe i Mo. O2 ją inaktywuje czas półżycia ok. 10 minut. Fe-białko przyjmuje e- z zred. ferredoksyny lub flawotoksyny, ulega red. i przyłącza 2 atomy Mg i 2 cząsteczki ATP, potem tworzy kompleks z Fe-Mo-białko, przekazuje e- na centrum żelazowe białka MoF, tu jest hydroliza ATP i odłączenie Fe-białka. Zredukowane Fe w dinitrogenazie daje e- na Mo, który red. N2, dołączenie protonów daje powst. NH3. Jony amonowe idą do ketokwasów i oksykwasów, powstaja aminokwasy, azotany muszą być zred. do związków amonowych od No2- do NH3+. Rośliny pobierają azotany, ale przed wbudowaniem do oksykwasów muszą byc zred. Azotany to gł. forma azotu dostępna dla roślin. Niektóre rośliny w pewnych warunkach wykorzystują NH4+, w kwaśnych i suchych glebach, gdzie nie ma bakterii nitryfikacyjnych. NO2 pobierają indywidualnym systemem transportu, korzenie nie przystosowane do pobierania azotanów wykorzystują własny system transportu w czasie fazy wstępnej (fazy lag) jest wbudowanie NP3 z udziałem nosnika, hamuja to warunki beztlenowe i cyjanki. Potrzeba tu E. Nadmiar NO3 może byc kumulowany w wakuoli. NO3 redukuje reduktaza azotanowa z wykorzystaniem e- z NAD(P)H, enzym jest homodimerem zbudowanym z 2 cząsteczek białka z 2 g. prostetycznymi, każda ma FAD, kompleks molibdenowy i hem. Mo wiąże z białkiem organiczna cząsteczka, pteryna, działa ona jak helator metalu (wiąże go). Syntezę reduktazy azotanowej hamuje substrat azotan, synteza nowych części enzymu jest stymulowana przez degradację puli w komórce. Steady state, równowaga. Światło jest potrzebne do pełnej aktywności enzymów. 1 etap NO3-+NAD(P)H+H+=(z udz. e-)NO2_+NAD(P)+H2O. Red. azotanów w cytozolu. 2 etap to red. NO2- do NH4, reakcja jest w plastydach z wykorzystaniem zred. ferredoksyny lub NAD(P)H. NO2-+6Fdred+8H+=(z udz. 6e-)NH4++6Fdox+2H2O. tę reakcje katalizuje reduktaza azotynowa, która jest zbudowana z 2 podjednostek białka i 2 gr. prostetycznych mających Fe4S4 i hem. Część ciała metabolizmu azotowego zależy od warunków wzrostu, wieku i gatunku. U większości roslin jest w pędach i korzeniach. do części nadziemnych nie jest transportowany NH4+ tylko NO2-, amidy, aminokwasy i mocznik. NH4 jest w nie wbudowywany. U łubinu Lupinus sp. jest w korzeniu, rzepienia Xanthium sp. jest w częściach nadziemnych. Wiemy tio z badań eksudatu. Gdy jest mało NO3- red. jest w korzeniach, gdy duzo to też w liściach. Jeśli metabolizm azotowy jest w korzeniach, transportowane są związki organiczne azotu (mocznik, amidy, aminokwasy), nigdy nie NH4+. Starzenie i zamieranie, cewki i naczynia muszą zamierać, żeby pełnić swoją funkcję. Tworzenie nośników azotu, reduktywna aminacja powst. glutamina lub glutaminian z2-oksyglutaralu +NH4+, trzeba ATP, synteza Glutaminy/glutaminianu, transaminacja to synteza aminokwasów z 2 grup NH2, idzie on z glutaminianu na inny ketokwas np. szczawiooctan, powst. asparaginian i 2-oksyglutaral. Glutaminian+NH2=glutamina - reakcja odwracalna. . Starzenie i umieranie liści w naszej strfie klimatycznej odbywa się jesienią. Rozwój roslin stymulują sygnały egzogenne: światło, temp., CO2, wilgotnośc, H2O, fotoperiod (stosunek długości okresu ciemnego do jasnego), bliskość innych roslin, grawitacja, patogeny i endogenne: fitohormony, auksyny, gibereliny, cytokininy, etylen, kwas abscyzynowy, kwas salicylowy, brasinosteroidy, jasmoniany. Endogenne regulatory to substancje syntetyzowane w roslinach, egzogenne są syntetyzowane w przemysłowych warunkach. Regulatory rozwoju roslin to m. in. fitohormony, sa one transportowane w rooślinie od miejsca syntezy do miejsca, gdzie działają, są nośnikami informacji. Najlepiej poznane sa auksyny, gibereliny, kwas abscyzynowy, etylen, cytokininy, brasinosteroidy, jasmoniany. Są to niskocząsteczkowe związki o masie od 28 daltonów (etylen) do 348 da (gibereliny).
Dodaj komentarz