Te bakterie można wykorzystać do usuwania plam ropy. Jest kilka takich bakterii. Delsulfovibrio oxyclinae rozkałda węglowodory aromatyczne. Jest beztlenową bakterią redukującą też siarczany, współpracuje z bakteriami z rodzaju Marinobacter sp., która jest fakultatywnym tlenowcem z wody morskiej, rozkłąda ona długołańcuchowe węglowodory. Dużą zdolnośc rozkładania ropy ma gramm-ujemna Alcanivorax borkumensis. Występuje ona w górnych warstwach wód slodkich i slonych. Acinetobacter HO1-N, obligatoryjnie beztlenowa, gramm-ujemna bakteria zamyka heksany w pęcherzykach blonowych, blona komórkowa uwypukla się, otacza heksany, potem pęcherzyk łączy sie z błoną komórkową, heksany ida do wnętrza komórki, gramm-dodatnia pałęczka Nocardia sp. tworzy zewnętrzne pęcherzyki i tubule, to endocytoza. Pałeczka ropy błekitnej Pseudomonas aeruginosa dobrze mnozy się w ropie naftowej i zuzywa ją. Większośc tych bakterii ma hudrofobową powierzchnię komórki ułatwiająca transport ropy.
Główny składnik ropy alkany są absorbowane na 3 sposoby, lekkie cząsteczki rozpuszczalne, mikrokrople i makrokrople. Wchłanianie zależy od bakterii, warunków zewnętrznych i alkanu. Bakterie wydzielają biosurfaktanty, które otaczają krople ropy i są wchłaniane przez bakterie. Najłatwiej degradowane sa liniowe alkany od 10 do 25 atomów węgla, potem gazowe węglowodory: etan, propan, butan, potem drobnołańcuchowe od pentanu do nonanu, potem rozgałezione lańcuchy do 12-węglowych, potem alkeny od 2 do 11 atomów węgla, potem rozgałęzione alkeny, potem cykloalkany, na końcu monomery i polimery, są grupy bakterii ozkłądające te związki, warunki zewnętrzne decydujące o rozkąłdzie ropy to tlen, temperatura, pH i inne potrzebne bakteriom związki.
Szlaki biodegradacji alkanów:
-oksydacja terminalna polega na przyłaczeniu aktywnego tlenu do ostatniego lańcucha alkilowego, powstaje pierwszorzedowy alkohol, tu monooksydaza n-alkanowa dołącza O2 jest alkohol, dehydrogenaza alkoholowa odłącza cząsteczke wodoru powstaje aldehyd, dehydrogenaza aldehydowa zmienia go w kwas tłuszczowy, monooksydaza ω-kwasów tluszcozwych dodaje grupe OH, dehydrgoenaza alkoholowa zmienia grupę hydroksylową w aldehydową, dehydrogenaza aldehydowa tworzy drugą grupę -COOH.
-oksydacja subterminalna to utlenie środkowej gr metylenowej, powstaje alkohol drugorzędowy, monoksydaza subterminalna działa na alkan powastaje drugorzędowy alkohol, na niego działa dehydrogenaza alkoholowa powstaje keton, monooksydaza Baeyer-Villiger daje ester, esteraza hydrolizuje go na kwas tluszczowy i alkohol.
Kwasy karboksylowe wchodzą do metabolizmu batkerii, alkohole oksydacją terminalna zmieniają się w kwasy karboksylowe.
-oksydacja diterminalna ω-oksydacja, to oksydacja obu końców łańcucha węglowego, tu działa monooksygenaza kwasów tłuszczowych utlenia końcowy węgiel, dehydrogenaza alkoholowa i aldehydowa daja kwas dikarboksylowy.
Kwasy tłuszczowe wchodzą do szlaków β-oksydacji, powstaje Acetylo-Co-A.
Utlenianie metanu: monooksygenaza metanowa utlenia go do metanolu, dehydrogenaza metanolowa daje formaldehyd, dehydrogenaza formaldehydowa tworzy kwas mrówkowy, który dehydrogenaza mrówczanowa utlenia do CO2, może on byc wykorzystany do biosyntezy związków organicznych na szlaku rybulozowym lub serynowym.
Proste łańcuchy są lepiej biodegradalne od rozgałęzionych. Gramm-ujemne pałeczki Achromobacter sp. utleniają 2,2-dimetyloheptan do kwasu 2,2-dimetyloheptanowego, alkan izopreinowy może byc degradowany przez maczugowca Corynebacterium sp., tlenową płeczkę gramm-dodatnią, gramm-dodatnią, bytującą na skórze Brevibacterium sp. Alcanivorax sp. i Nocardia sp. na drodze β-oksydacji lub ω-oksydacji, odłączane są 2 i 3-węglowe związki, dobrze poznane sągramm-dodatnie Rhodococcus sp. rozkłada cykliczne alkany, grupy izopropylowe utleniaja do alkoholi pierwszorzędowych, potem do kwasów organicznych. Reakcje preprowadzają hydroksylazy: m. in. monooksydazy, hydroksylaza hydroksylowa, karboksylowa.Dla Rhodococcus ruber CD1-411 cyklododekan to jedyne źródło węgla.
W warunkach beztlenowych zamiast tlenu jony żelaza i innych metali, CO2, sulfoniany, azotany, bakterie redukujące związki siarki mogące redukować alkany to δ-Proteobakterie, nitryfikujące zdolne do redukcji alkanów to β i γ Proteobakterie. Metan rozkładają kompleksy archeonów i bakterii rozkładających związki siarki, rozkłądaja metan do CO2 i H2, którym utleniająz wiązki siarki, archeony i bakterie pobierają od siebie H2 dyfuzją cząsteczkową. Rozkłądająca związki siarki Desulfococcus sp. utlenia tylko propan i butan, denitryfikacyjna Azoarcus sp. rozkłada 6-8 węglowe związki, 12-20 węglowe rozkłada Desulfobacterium Hdx3.
Utlenianie alkanów jest przez dodanie w subterminalnej pozycji fumaranu, powstaje pochodnia kwasu bursztynowego, łączy się on z koenzymem A, powstaje acylo-Co-A, wchodzi do szlaków beta oksydacji. Może byc kondensacja alkanu do fumaranu.
Monooksydazy przyłączają do organicznych związków O z O2, to monoksydazy (hydroksylazy) alkanowe i monoksydazy Baeyer-Villiger, są 3 typy monooksygenaz:
-metanowe utleniające 1-4 węglowe alkany,
-cytochromowe P450 maja niehemowe żelazo utl. od pentanu do heksadekanu,
-reszta utlenia dłuższe lańcuchy niż 17 C.
Metanowe maja wszystkie tlenowce rozkładające CH4, w blonie mają monooksydazę pMMO z miedzią, gramm-ujemne kokoidalne Methylococcus capsulatus bez miedzi robią rozpuszczoną w cytozolu sMMO, które mają niehemowe żelazo, robią hydroksylacje i epoksydację drobnych węglowodorów, mają hydroksylazę MMO-H, reduktazę MMO-R, białko regulatorowe MMO-B, w centrum aktywnym metan reaguje z O2 powstaje metanol, reduktaza z FAD pobiera e- z NADH, ida one ze zred. flawiny Fe3+ na hydroksylazie, utl MMO-Hox przechodzi w aktywny zred MMO-Hred z Fe2+, który tworzy kompleks z MMO-B, reaguje z tlenem powst. intermdiant Q wiąze alkan, z niego wodór idzie na Q, powst. hydroksylowany intermediant Q i wolny rodnik alkilowy, reaguje on z gr hydroksylową, produkt opuszcza kompleks po redukcji.
pMMO ma hydroksylazę pMMO-H i reduktazę pMMO-R, reduktaza pobiera e- z NADPH+ idą do hydroksylazy lub białkowego mediatora przekazującego je na nią. Gramm-ujemna Pseudomonas butanovora ma trójkomponetną monooksydazę butanową z niehemowym Fe. Reaguje z 2-9 węglowymi alkanami, Gordonia sp. utlenia propan w pozycji beta. Hydroksylazy alkanowe i enzymy zw z cytochromem P450 hydroksyluja alkany 5-16 węglowe, hydroksylaza alkanowa AlkB jest u gramm-ujemnych bakterii Pseudomonas putida GPo1, utlenia C w pozycji alfa, ma niehemowe żelazo, sklada się z hydroksylazy, rubredoksylazy, reduktazy rubredoksydazowej, dodaje tlen do węgla, powoduje powstanie epoksydów i kwasów tłuszczowych, jest w wewnętrznej błonie komórkowe, kompleks tworzy kanał, którym alkan idzie do komórki, przechodząc reaguje z Fe2+, rubredoksydaza przenosi e-, hydroksylaza rubredoksydowa redukuje FAD, e- idą na rubredoksynę. Enzymy pHAs utleniające alkany to pHA1, są u P. putida, Alcanivorax borkumensis, Marinobacter aquaeolei. pHA2 rozkładają 5-16 C alkany, tu są Acetinobacter sp. i Pseudomonas fluorescens są tlenowe robią fluorescencyjny barwnik piowerdynę. Są też hemozależne monooksydazy cytochromowe CYPs, są tu monooksydazy kl I maja ferredoksynę Fd, domenę hemową, NADH, zależna reduktazę ferredoksynową z FAD FdR, enzymy te ropzusczalne białka bakteryjne i mitochondrialne. Kl II ma domene hemową i reduktazę z FAD lub FMN, są związane w błona, są u Eucariota. III maja te same związki co II, łączy je polipeptyd, sa rozpuszczone i błonowe, są eukariotyczne i prokariotyczne, IV maja te domeny co I, łaczy je polipeptyd.
Wszystkie monooksydazy potrzebują e- pochodzących z NADH i NADPH do aktywacji O2, e- idą na hem, alkan łaczy się z enzymem, elektrony idą na hem, zred hem przyłącza O2 powstaje intermediat nadtlenkowy, tlen przyjmuje elektron i 2 protony, wiązanie między atomami O2 rozpada się, reaktywny intermediat przyłacza O do alkanu jest kompleks produkt-enzym, produkt sie uwalnia. Hydroksylazy kl I rozkladają węglowodory 5-10 C, są u Acetinobacter sp., Alcanivorax borkumensis, gramm-ujemne tlenowe prątki Sphingomonas sp. Mycobacterium sp. i Oleomonas sagaranensis. Bakterie te mają CYPs i pHAs, Mycobacterium sp. ma HXN-1500 rozkładającą węglowodory 6-11 C, Acetinobacter sp. rozklada węglowodory 10-30 C hydroksylazą z atomem miedzi (II), enzymy podobne do AlkB i monooksydazy cytochromowej rozkładają alkany 10-20 C, monooksydaza flawinowa AlmA rozkłada alkany 20-31 C, monooksydazy Baeyer Villiger BVMOs wprowadzają O2 do łańcucha aldehydów i ketonów, maja flawine jako FAD lub FMN-to grupy prostetyczne lub koenzymy. Te monoksydazy tworzą aktywne intermediaty, zależnie od uprotonowania przyjmują e- lub H+. Bez substratu intermediat rozpada sie na utl. flawinę i H2O2, przy substracie i NAD(P)H jest zred do hydroperoksyflawiny, rozpada sie na utl. flawine i H2O. NAD(P)H redukuje flawinę. BVMOs mają 2 typy, I to jednokomponentowe białka z 2 domenami połączonymi z FAD, FAD to gr prostetyczna, z tym typem przez cały czas reakcji jest zw NAD(P)H, u Acetinobacter sp. jest monooksydaza cykloheksanowa, utlenia cykliczne ketony, są też monooksydaza cyklopentanowa i cyklodekanowa. II typ to białak z 2 podjednostek oksygenazowych i 1 reduktazowej, oksygenzowe łączą substrat z O2, reduktazowa zw z FMN wykorzystuje NADH i NAD(P)H, redukują one flawinę, zred flawina idzie na podjednostke oksygenazową, tu są hydroksylaza alkanowa LadA u Geobacillus thermodenitrificans NG80-2, utl alkany 15-36 C do pierwszorzędowych alkoholi, to lucyfera odp. za rozpad białka lucyferyny dając bioluminescencję [Mikrobiologiczny rozkład alkanów ropopochodnych U. Guzik, D. Wojcieszyńska, M. Krysiak, E. Kaczorek].